A Photography forum. PhotoBanter.com

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » PhotoBanter.com forum » Digital Photography » Digital SLR Cameras
Site Map Home Register Authors List Search Today's Posts Mark Forums Read Web Partners

Anti-full frame article



 
 
Thread Tools Display Modes
  #1  
Old February 11th 08, 06:00 PM posted to rec.photo.digital.slr-systems
RichA
external usenet poster
 
Posts: 2,544
Default Anti-full frame article

Sorry, the images won't reproduce here of course.
http://www.digitalsecrets.net/secret...FrameWars.html

Wholly Grail?
8-22-07

Bigger is Always Better. End of Discussion.

Thomas Edison sat down with George Eastman in 1891 and drew out
plans on a napkin that determined why you may be lusting after the
Holy Grail of a Full Frame DSLR.

He asked Eastman to cut his existing 70mm film in half, add
sprocket holes and package it on spools for movie making. Then the two
had lunch, shook hands and sealed your fate.

Image at right: Watch This Space by Peter iNova, photographed on
digital iNovaChrome with a 3MP Nikon Coolpix 990. Versions of the
frame have been created for Nikon, Canon and Sony cameras since 2001.

Gotta have a Full Frame DSLR! Gotta, gotta, gotta. It's OBVIOUSLY the
best idea since English Muffins with honey and peanut butter...

[Wake UP! --fingersnap, fingersnap-- The idea of full frame 35mm is
older than airplanes! And just look how far those have evolved!]

Tom and George were interested in movies. Their scheme involved a
picture an inch wide plus some extra celluloid at the edges for the
required sprocket holes.

"How much do you need?"

"About --oh, one second per foot of film. 16 frames to the foot.
How big is that?"

Later, around 1905, Oskar Barnack at Leica decided to make a
camera that took a picture exactly two movie frames wide. It required
a new high tech data conversion invention--the Enlarger--to make sense
of the small negative, but Oskar was a visionary and had a working
proto in hand by 1914. (His nickname was Blitz.) Then World War One
happened, so the idea didn't hit your local K-Mart shelf until 1925.

Inside the first Full Frame camera, the Ur-Leica, a 24 x 36mm
frame made amazingly large 100 x 150mm prints (4 x 6 inches), and a
whole series of industries were born.

In other words--and just for perspective--the 1891 movie film
finally became "full frame" still film in just 12,418 quick days.
Technology was racing full tilt. Whew. For comparison, the practical
digital photography revolution has been moving from baby steps to
today's best over a span of about 4900 days. Where was I?

Movies never really got off the 35mm standard, but still
photography tried a bunch of ideas. Instamatics, disk cameras, APS
film--hey! All these abominations came from guess who--George
Eastman's old company. But in spite of their insistence on smaller
negatives to better take advantage of higher quality film materials,
every one of them has faded away. About the only thing good we can say
about them as a group of ideas is this--at least they were trying to
think outside the box.

Out of Box Experience

Digital photography forced an out of the box experience all its own.
Kodak was there, too, Big Time. In fact, the only thing left of the
original box was the darkness inside it. The first 1.3 megapixel image
chips were mounted inside a Nikon F3 body, but the chip was small
compared to what the camera had been designed to capture, so the
picture didn't match what the camera would have produced if it had
followed its destiny as a 35mm SLR.

Making image chips is not simple, nor easy, nor cheap to do. They hold
a huge number of precisely drawn metal, silicon, insulator, light
filtering and optic details in every square micrometer. Making them
stretches technologies to their limits, and making them perfect is
nearly impossible. Each photosite ideally behaves like its neighbor,
but errors in fabrication are frequent enough to shatter that dream.

Making image chips big is an exercise in frustration. They're never
going to be 100% perfect, so steps need to be taken to repair
underperforming, damaged or dead photosites as the digital image is
formed. The question soon becomes "how many mistakes can you
compensate for, later?" Digicams contain customized lists of
underperforming pixels just to track those flaws.

Most digital cameras have image chips that are the size of a 16mm
film frame or smaller. These are the Compact Digitals and at least 90%
of all digital cameras follow their conventions. So far, nobody has
gotten the bright idea of making a DSLR with these tiny chips.

When you project an image on a smaller screen, people see a more
telephoto crop. That's what happens when image chips aren't the size
that the lens can fully cover. A sort of Natural Selection has
established a common 16 x 25-ish millimeter size for image chips in
DSLRs from Canon, Fuji, Minolta, Nikon, Olympus, Pentax and Sigma. Oly
has even produced three DSLRs in the 4/3 ("Four Thirds") format. Older
optics fitted to these grow in apparent focal length. A Nikon 200mm
lens, for instance, behaves like a 300mm on a 135 camera. (135 = 35mm
still frame format, if you missed last Wednesday's Format 101 class.)

Since DSLRs are built--traditionally--on existing 35mm SLR hardware,
the natural extension of 35mm film history has become the driver of
the desire to make the ultimate image chip: the Full Frame chunk of
silicon that achieves exactly what Tom, George and Oskar dreamed up
before 1906. In other words, their 100 year old set of design
parameters is what is propelling the current lust for DSLR perfection.

After all, the whole world knows exactly what to expect when they hear
50mm lens, 28mm lens, 135mm lens. Don't they?

When I first wrote the phrase "Status Quomentum," I was trying to
convey how social trends are like physical objects in their resistance
to change, but this DSLR thing is out of hand.

How wide is a 50mm lens, horizontally? Show of hands? Can you tell
it to me in degrees? How many of you said 45 degrees? Well, you were
wrong. Which of these is right: 48 degrees? 44 degrees? 50 degrees?

Can you demonstrate it to me in hand gestures? Can you stand in
the corner of a room and point it out to me as a sweep of your
pointing finger? Can you show it to me as an angle of view on a floor
plan?

Can you bracket your index fingers and thumbs and show me a 50mm
lens coverage like a director showing a cinematographer what he wants
the shot to see?

If you're like most people, you can't.

Only one photographer in ten responds to that challenge within ±5% of
accurate. As a group, they overestimate the coverage. They make it
wider than it really is. Sort of a Field Of View Optimism creeps in,
and the average area the most practiced people point to is about
equivalent to a 42mm lens.

Oh, by the way, that 50mm lens covers a 40 degree chunk of view,
horizontally, and that's quite a bit smaller than most people guess.
Normal lens, pfffft.

If you look at the lens charts, you will see coverage of more
degrees for a 50mm lens. But those are nearly always measured corner
to corner. Diagonally. Horizontal coverage is 83% of diagonal.

So much for great expectations. The point is that the existence of
optics made for the 35mm film medium is the reason people lust after a
Full Frame digital SLR. You know--so they can recycle the pre-existing
optics into their new DigiBody and get all the benefit from lens
purchases made in 1998, 1994, 1987 and 1982. And the most common
excuse supporting that comes in the form of "Look how good those
lenses are. How well they cover the frame. How wide they cover."

Moderator # 1: Image quality. Lenses for 35mm cameras are, on average,
much sharper in the center 2/3 of their coverage than out at their
edges. And that includes the wide angle lenses, too.

Moderator # 2: Frame Coverage. The corners of most lenses are dimmer
than the centers. By 1/2 to 1.0 full stop! That wonder-wide-angle
optic of yours is very likely softer and dimmer in the corners than in
the center 2/3 of the frame. Are you sure you want to send its image
onto your full-frame chip?

Moderator # 3: Width. While it's true that a Full Frame image chip
intercepts the whole picture a 135-format wide angle lens projects
into the camera, is the Big Reason you need a Full Frame image chip
that you need to recycle your already-owned wide angle lenses from
yesteryear? If so, I've got a killer VHS machine I'll sell you for
$2500! I guarantee it will get the absolute best possible image out of
your pre-existing VHS tapes. Would you buy it?

The clues here are several, all piled on top of each other. Cutting to
the chase, it comes down to this:

For the price of a Full Frame DSLR camera body, you could buy a wonder
of a smaller-format DSLR body and several fabulous wide angle optics
made by more recent computer design algorithms and fabricating
techniques that produce about equal or better pictorial results on
your smaller image chip. Your files will be smaller, your computer
will seem faster and your only loss--in a practical sense--will be
bragging rights.

Higher lines indicate greater performance.
Optical center is on the left. M=Meridional (radiating from optic
center), S=Sagittal (tangent).
Numbers indicate lines per millimeter reproduced to a percentage of
clarity as indicated by the vertical scale.
The right side of each chart represents the farthest corner of the
image.

Here are two MTF charts from zoom lenses. Which is better? Which
was computer designed for a digital camera and which was computer
designed several years back for a 35mm film frame? Lock your guess in
right NOW!

Both cover about the same zoom range in degrees wide and tele on
their intended formats. Both are f/2.8 throughout their ranges. Both
are admired widely for their stunning performances in their intended
mediums. The one on the bottom, however, is an older computation
designed to fill film. The top one with digital's APS-C coverage was
computed from scratch on newer design equipment--and built on a more
modern assembly line, but it had a different set of formulaic
challenges. Since it had to position the optics proportionally farther
out from the image plane, it was forced into more exotic aspheric and
extraordinary glass formula element designs. A tougher challenge for
the smaller chip, but it achieved better performance, cleaner corners,
less vignetting (helped by the more distant throw) and even about 28%
more zoom than the older, full frame design. Both of these lenses list
way above $1,000US and sell for within $50 of each other.

A salient caveat: Film has more running millimeters, so one might
say that the corner figures don't need to live up to a performance
standard as stringent as the one smaller format digital chip image
requires, and one would be right to point that out. But note that the
full frame image's Wide 10mm numbers are lower than the smaller
format's 30mm numbers. What would have made these two sets of charts a
more perfect comparison would be 15mm and 45mm numbers on the top,
digital, charts. Still, you can roughly estimate what they might be
from the data here.

Of course, this is just one example, and the nay-sayers will say
Nay, you cooked the example. I invite them to dig into the data on
their own. I picked this example not because it was The One that
showed the odd exception to the rule, but because it was closest to a
typical apples to apples comparison.

And, no, I'm not even going to reveal which brand and models they
are. Do your own research. You'll learn more that way.

What's it all mean? Here's my opinion: The whole idea of a Full Frame
chip isn't a bad one, but it isn't The Answer to anything essential.
B'b'but what about pixel count? Isn't that SomeThing? Yea and nay.

For example: I'm very disappointed in the Canon 5D low-end full frame
camera body. It represents to me how to throw $3,300 (MSRP) at one
idea (12.8MP Full Frame) while forsaking a double handful of better
ideas that are already embedded in the earlier Canon 20D and later 30D
(newer optical prescriptions available, lower cost, faster flash sync,
lower cost, more shooting modes, lower cost, lighter weight, lower
cost, faster frame rates, lower cost, longer battery life, lower cost,
on-board fill flash, lower cost, smaller file sizes--and did I
mention, lower cost?).

So for that premium price you get a slower shooting, less fully-
featured, heavier, slower flash sync, no on-board flash camera that
can't use the newest, sharpest optics, and the advantages of nearly
microscopic signal to noise in each photosite, plus more of them, a
slightly brighter viewfinder and the satisfaction that you've filled
an arbitrary frame size nearly 120 years old.

Now that the multi-talented EOS 40D is afoot with its 10.2MP imager
and a whole SLEW of extra features and capabilities, it's clearly a
decision between a dumbed-down full frame camera and a much more
capable APS-C camera for half the bucks.

Canons EOS1Ds Mark III (pronounced ei-yi-yi) has twenty two big ones.
Megapixels, that is, all lined up in their Fullest Frame camera yet.
But the cost for all that pixel power isn't cheap. Eight thousand
dollars. Plus lens.

How about diffraction? Doesn't that count. Yes, and avoidance of it is
a worthwhile goal, but the diffraction limits between your full-frame
12.8MP camera and an APS-C frame 10MP camera is only about 0.7 f-stop.
You paid WHAT for 2/3 of a stop of diffraction threshold and 3MP?

In order to give you the magic Full Frame Experience at low dollar
count in the 5D, Canon has indulged in a very Aztec sacrifice: They've
cut the heart out of a 30D, put a gold head dress on the carcass and
offered the results up to the gods of commercial marketing. Perhaps I
took that a bit too far. Way too far. But you get the point.

Of course, the Full Frame 5D has the ability to print out an image
with about the same per-square-inch definition filling a sheet that is
27.5 inches wide versus the 20/30D's "mere" 22 inch wide print, but as
the test reviewers demonstrate, the full frame-ness of the camera is
nice, but is it worth a 275%+ premium? Actually mo you still need
to purchase a flash.

I shouldn't pick on Canon. They are serving a market demand and
gaining the high ground of bragging rights at the same time. Nikon is
watching this whole thing with cocked eyebrows and their D3 with 12
megapixels in a full frame format delivers things that even Canon's
DsMk3 won't: Faster motor drive, up to 11 shots per second in moto
mode.

The Canon EOS 400D (Rebel XTi) has a 10.2MP image chip and it costs a
whopping $799 for the body in black or silver (less in summer '07).
What does that do to your 5D? Nothing, directly, but it does make
spending $2500 for 2.6 extra megapixels of image a little rude. By the
numbers, the 3888 pixel wide image of the 400D makes pictures at least
89% as wide as those from the 5D's 4368 pixel wide image chip. And the
400D is within 1/3-stop of the 5D's diffraction limit.

When compared to the retiring Nikon D2Xs (excess... get it?), which
has an APS-C sized image chip (about 67% of the linear dimensions of a
full 35mm frame) with virtually the same pixel count as the 5D,
results are so close you couldn't tell the two apart unless you were
told which was which. The D2xs costs more than the 5D but shoots at 5
fps / 8 fps (in a clever 6 MP crop mode) and includes virtually every
hyper-pro feature in the book (but also no on-board flash). So one
kind of buying decision comes down to: Pay a bit more for the
thoroughly Pro camera or get the stripped-down full framer?

Each digicam is what it is. An assembly of technologies that deliver
images to people skilled in their use. Each design sells for a price
that reflects the difficulty of fabricating the tool versus the price
the world will pay to own it.

When it comes to considering the practical, operational, feature-
laden, deliverable results between the 5D and its brethren, the voice
in the back of my head says, "Buy the EOS 400D, Luke!" Then it echos
softly, "Pocket the two and a half grand, Luke!"

Or go with nearly the feature set of the Canon DsMk3 with the 40D for
$1300US. It will save you $6,700 over the Ds. That will buy you a
closet full of optics.

Pixel count. There's your Holy Grail. Huge printers. There's your
other Holy Grail. Because until you get a HUGE HONKING PRINTER**
you're going to miss out on virtually every echo of the amalgamated
Full Frame Lust that your all too often irrational subconscious keeps
telling you is real. To appreciate the output of the Canon EOS1Ds Mark
III, you better buy a printer that stands upright. No desktop printer
will show you everything that camera and its mega-prime lenses can
capture.

If you can't actually print the 5616 pixel wide images onto paper 24
inches long--at minimum--you're never going to realize full-size
blowups from your 21.1MP images. Buying a printer to do that will set
you back around 2-2.5 grand (US dollars), just to show your efforts at
maximum impressiveness. So that $8000 camera body just cost ten grand.
Minimum.

96.2% of EOS 5D (and D2Xs) owners don't own a printer this large. But
virtually all (meaning over 50%) of 10MP camera owners have tabloid or
Supertabloid printers at their elbows. For our eBook on the 6MP 300D
camera, we recommended owners get a larger printer, and shots from
that camera seen at 18 inches wide are impressively sharp and well
detailed. Shots from the 400D are even better, as are the results from
the 40D.

At this point in the digital photography evolution/revolution your
images have already acquired a staggering suite of feature benefits
with any digital camera gathering 2000 x 3000 pixels or greater.

* Direct color separation of the world
* Variable ISO
* Multi-sensor exposure metering systems
* In-camera image quality adjustments
* Extended dynamics via RAW files
* Image quality roughly 35mm film or higher
* Ability to conveniently print substantially above 8 x 10 inches

Conclusions #1, #2. #3 and #3.5:

1. Sheer pixel count truly is a Big Deal. Up to a point. And because
packing them in is directly related to surface area, the existence of
Full Frame cameras will always allow 200+% more photosite
opportunities and marketing departments won't ever let you forget
that.

2. More pixels mean greater real estate to crop among. You could, for
instance, crop a dandy 6MP image out of the 5D's 12.8MP image and
print it big. The same applies to the 400D, 40D and Nikon D200, D80
and D40x.

3. Larger surfaces naturally allow larger photosites and they are--all
technologies being equal--lower in noise than smaller ones. Canon
brags that the 40D has an even better tweaked 10.1MP image chip over
the 400D. We shall see, but this sort of improvement is almost
expected.

3.5. Following these positives by half a point is the diffraction
relationship. 1/3 of an f-stop better lens closed down performance
from the 5D. Whee.

2.7MP + 1/3 f-stop of diffraction limit = 200% to 600% in price
premium? Not in my wallet.

Full frame differs from APS-C frame models in four areas:

* Noise (moot)
* Pixel count (greater for given photosite size)
* Diffraction limit (depending strictly on photosite dimensions)
* DOF (intrinsically shorter in full frame format)

And there is one more, which may or may not affect you:

* Cost (FF=$$)

Balancing that a list of real-world countervening realities:

Image sensor chips are already above lens performance in many designs. Modern computer-aided lens design refinement is targeting smaller sensors because that's where the economics of advanced performance lens design is biased.


Prime lenses with FF performance are rare. Canon's own new 14mm ultra wide prime fills this niche, but it is $2,200US per copy.


Bigger pixel counts trade off picture resolution for speed. The DsMk3 shoots only five frames per second. Nikon's FF (D3) with its 12MP FX format chip shoots seven frames per second and in crop mode to DX lens coverage, it shoots a 6MP image at 11 fps.


My question is this: When do these cameras become movie cameras?

-iNova

(End of Rant. Or is it?)

Addendum A:

Silly me. I've missed--through inexperience--one of the problem area
that users of FF cameras have been discussing among themselves.

An issue that seems more important in practicality than was
appreciated is this: Geometry+photosite design+lens physics+mount
physics+photon impingement angle. How could I have overlooked it?

The idea is this: no lens delivers light rays perpendicular to the
surface of photosites, except at the optical center of the lens, which
is usually in the center of the image. Perspective control lenses are
the only ones that routinely change this arrangement.

Rollover the image to add photon tracks.

But every lens has its own focal length. Meaning that the angle of
light rays from a telephoto lens and those from a wide angle lens are
as different behind the lens as their angles of view are in front of
the lens. In general, wide angle lenses paint their photons into the
corners of images at a MUCH more acute angle than do tele lenses. So
what?

As light slams into photosites at an angle, they encounter several
layers before banging into sensitized silicon. A clear "retarder
plate" to confuse any residual polarization (don't ask), a clear, but
mildly diffused "antialiasing" filter, a color filter, sometimes an
anti-moire filter and an array of microlenses precede the sensitive
patch of each photosite. Where all this becomes something of a problem
is in its eventual real-world behavior at the photon level.

The microlens atop the photosite is designed--in current technologies--
to concentrate the totality of photons streaming into the whole area
of the photosite onto its far narrower sensitive area in the center of
the tiny photosite. It's a simple lens--a dome of refractive material
designed to steer photons from the edges into the active center. Not
seen in the artist's diagram above is the factoid that only about 10%
of the photosite's area literally responds to light.

Light arriving at an angle to the centered microlens isn't as
efficiently steered into the photosite's sensitive center. Add to that
the factoid #2 that wide angle lenses don't have corner coverage as
bright as their optical center coverage--a different kind of optical
phenomenon, but always a consideration in wide lens design--and a
common result is that full-frame images increase corner vignetting
with certain legacy wide angle designs.

Film surfaces don't have these issues. Film is a flat, somewhat matte
surface, every square micron of which is photosensitive.

Well, wasn't the Big Reason to make FF chips in the first place to be
able to recycle all those previous purchases? Or was the Big Reason to
give the previously all-film photographer the same depth of field he
was enjoying in 1989?

With every solution comes its own problem.

The new Leica M8 digital rangefinder confronted this issue--and it
isn't even a full-frame camera. Because of Leica's basic design
geometries, the back elements of Leica lenses are considerably closer
to the image plane than those in typical DSLRs.

The M8's designers realized that the standard microlens idea was going
to produce a host of negative results, so the very special image chip
destined for these cameras would have to incorporate technologies that
specifically allowed severely acute light ray angles so photosites
would be better served.

Image from Leica brochure. 1. Photosite. 2. Center rays. 3. Corner or
off-center rays mated with off-center microlens.

How? By designing the microlens overlay to deal with a different set
of assumptions. Each microlens is NOT centered over its photosite. As
the array of microlenses progresses away from the chip's optical
center, the microlens itself is progressively closer to center by
small amounts.

In other words, the microlens array is slightly smaller than the
photosite array, but both are in-register at optical center. And who
makes the chip? For readers who started with the opening paragraphs of
this page--yep. Kodak again.

(And wow, was this a Big Hairy Problem for Leica. The first cameras
had to be recalled to fix the way-underperforming image chips with a
re-designed microlens overlay system. Every solution generates its own
set of new problems.)

This is fine for cameras that will never be used with a 600mm lens.
One can design the lens-to-photosite geometries optimizing for wide to
modest teles--all of which are Leica design standbys. Leica's longest
lens these days is the Leica Apo-Telyt-M 135mm f/3.4.

Where all this meets the realm of practical reality is this: current
FF camera owners are often--but not universally--aware of vignetting
and softness issues in the corners of their images, particularly with
wide angle, legacy optics.

Modern wide zoom designs targeting DSLRs can be--and often must be--
designed around retrofocal optical principles, meaning that the rays
streaming out their backs are not at the acute angles so often seen in
legacy wide angle designs. And, as noted previously, new optic design
principles, computational tools and manufacturing techniques are much
more able to create superior lenses than those even a decade old.

Perhaps FF camera owners will be assuaged by knowing that the DOF from
1989 has been preserved.

-iNova

(Still ranting after all these years.)

Addendum B:
10 20 06 - 8 16 07

A reader has called my attention to the notion that the Canon 5D
viewfinder is a Big Deal in its brightness and image size, making it a
definite feature benefit that directly results from its inherent full
frame-ness. And it really is a great viewfinder by any standard.

At the physics level alone, it has twice as many photons flowing onto
its much larger ground glass at any given f-stop, so making it
brighter is an easy result to design in. The question is not so much
how much better full frame bodies can make their viewfinders, but why
are the viewfinders of lower-cost models by the same manufacturer
dimmer and smaller?

And why are the viewfinders of APS-C chip cameras made by competitors
often big and bright?

Penta mirror finders (Rebels, for instance) are cheaper and dimmer
than pentaprisms (5, 10, 20, 30Ds). But one thing that isn't obvious:
The influence of Marketing Departments. Meaning: intention.
Intentionally placed attributes that allow feature/benefits to be
touted in press releases are a staple of the industry.

Example 1: The EOS 350D image and EOS 20D images are created from the
same silicon chip, but the 350D's pixel count is intentionally cropped
smaller by 48 pixels wide and 32 pixels tall so the Marketing
Department could claim that the 20D's image was Bigger. In other
words, they intentionally crippled the 350D image by 1.4% just so they
could make that claim in forums of information delivery that offered
no clarifying dialog. "Of course you want the 20D over the 350D. Don't
you know that it delivers a BIGGER image? You poor fool."

Canon is very distinctly not in competition with themselves. They have
no marketing need to provide 20D, 30D, Rebel, Rebel XT and Rebel XTi
with viewfinders that compete with their flagship FF cameras. When the
10D was king, the first Rebel had a very truncated feature set that
kept it in its place, and obviously could have been widened for 30
cents and a few software tweaks.

Example 2: Hackers found ways of tweaking the Digital Rebel into
greater performance without changing a speck of hardware. You could
download and install non-factory software into the camera that
unlocked inherent capabilities Canon refused to let you have because
the perception of a cheap camera with remarkable extra abilities
didn't fit the Marketing Department positioning decisions at the time.

Other manufacturers who have no top of the line product to sell show
us the way . It's actually not that difficult to use the lower photon
count in more efficient ways and compete well with the 5D's live
image. (Pentax, for instance, whose K10D managed to bury the jewel at
right inside its head.)

Remember as you shop for technological devices that the feature set,
ergonomics and qualities of everything you interface with was PUT
there to position that device at a certain point within a Product
Line.

Product Lines are the co-territory of Marketing designers, not just
engineers. Those features and qualities weren't put there to stretch
the technologies and feature-benefits to their maximum. The designers
are balancing their estimate of your perceived value against the
minimum they can do to meet that perception head-on and give you
enough to want to buy it, not enough to compete with the next model up
the line.

Canon has saddled itself with an Elephant in the Room. They've held
onto Full Frame as being the Ne-Plus Ultra feature and the only
machines deserving certain technologies, features and wonderment, so
they intentionally design their lesser products to house somewhat
lesser performance.

Until the 5D, which was conceived as a FF camera for the masses, and
Canon hoped that FF would lift the camera to soaring new heights even
though it didn't offer some of the features of its 8MP predecessors.
In its way, it was the first FF Rebel.

How are sales? Did you use the $300 rebate March 2006? Or the $700 one
for autumn 2006? In summer, 2007, the body price has dropped to about
$2600 from the more expensive on-line retailers. Their follow-on model
offers 10.1MP and a less-than full frame image chip.

The EOS 1D Mark III requires lenses from full frame SLRs to cover its
non-APS-C image, while eating one's 28mm lens down to about 36mm
equivalent coverage. That very nice 10-22mm wide angle you bought for
your 20D won't work with it without vignetting. It does have 10fps,
though. Could this be a marketing gaffe similar to the 30D? Time will
tell.

Canon's perception of the world is getting a course in the college of
life. Reality is setting in. The Rebel XTi/400D is something of a
fluke by delivering much more than its price suggests and it
definitely competes with the 30D, but the 30D was a market share
holding attempt that probably should have been called the 20Di, 21D or
some such.

The decisions of the

1. 5D as a low-cost FF 30D minus some essential features,

2. 10MP 400D trumping the up-line 30D and

3. 30D itself being really a 21D leads us into the valley of the
shadow of confusion.

We don't have a lot of faith at the moment in the Good Decision
factors being earned by Canon's Marketing Department. Perhaps their
Grand Plan will become obvious over time (40D with a 12MP APS-C chip
trumping the 5D?). In the past, they have shown sheer brilliance, but
more recently seem to be adrift. And their Elephant in the Room is
that 5D.

--iNova
(The Rant-o-rooter)

Addendum C:

The contrarian view to my Rant is afoot. Mamiya has begun to release
the Mamiya ZD, a large-format digital camera that features a 48 x 36mm
single slab of silicon that captures 22 MP images. They've been
promising-testing-evaluating-chatting about this camera since 2004.
How long is that in computer years?

Implication: The larger the format, the slower the technology
development & improvement rate. Evolution craws as pixel count rises.
Say, didn't that hold true for full-frame digicams?

Released first in Europe for EURO 10,000 or £7,000, the Mamiya will cost
around $13,000US when it makes it here later in the season. Like most
large-format cameras, this is not your first choice for candids and
quickly evolving situations.

Its image map is 4000 x 5328 pixels--in an area exactly double the
physical size of a full frame 35mm film image. Since the Mamiya lenses
are generally designed to cover 45 x 60mm, this camera represents a
similar "crop factor" or "magnification factor" as is found in non-
full frame DSLRs. Presumably, that means you need to think of lenses
as being 125% of their native focal lengths.

With 4000 photosites in the short 36mm dimension of the image chip,
each photosite shows up at 9 micrometers square. For comparison, the
photosites in a D70 are about 7 micrometers square and the one in a
D200 are 6 micrometers square. Canon's D5 has photosites just a hair
over 8 micrometers square.

Forgive me, the phrase "just a hair" is not really applicable here
since you can fit around ten of these across the width of an average
human scalp hair.

The 4000 x 5328 pixel map is huge. But what I want to peek at is the
per-pixel resolving power of the available optics. Unless the lenses
are right AT the resolving limit of the chip--and that means in the 9
micrometer zone--then all those megapixels and all the extra time to
sling them around inside the computer will be like the California
vanity plate: "ALL 4 0" [all for naught].

Hmm. I wonder if Mamiya will get into the "digital lens" game with
special wide optics made especially for the tiny 48 x 36mm format
(60mm diagonal). It's a 3:4 aspect image and at 22 million pixels,
it's bound to be quite detailed. Don't even THINK of printing these
images smaller than SuperTabloid size. Go out and get a printer at
least three feet wide.

Photographers who require 22 MP images work with lower DOF, bigger
studio flash units (it takes a lot of light to work at f/22),
carefully controlled environments and bigger budgets. With a $20,000
rig of lights, camera and action to pay off, they're not as inclined
to work on spec or be tremendously experimental. And with a continuous
frame rate of 0.8 seconds between shots (1.2 fps), this is not going
to be your jiffy-cam.

Minutes equal euros. In the camera, in the computer, in the print and
in the layout. And what do 22 MP images eat? Minutes.

So maybe the big 11, 12 and 16 MP full frame DSLRs have a bigger role
in the world than I have been railing against. They ARE the bigger
format cameras of the evolving digital era. And for the price you will
plunk down for that Mamiya, you could get the Giant 16.7 MP Canon
EOS-1Ds Mark II and a closet full of lenses.

But you'd still have to buy a flash.

Questions for the discussion group:

How long before similar 5500 horizontal running-pixel counts hit
the Full Frame DSLRs? Did you say "already?" You would be right.

Okay, how about 6500? There's your 28MP FF chip. Talk among
yourselves.

How long before 5500 pixel count chips find their way into APS-C
DSLRs? Talk among yourselves.

How long before lenses are produced for DSLRs that support the
resolution implied by 5500 pixel image chips in any format? Talk among
yourselves.

-iNova

(Building a rantway to heaven.)

Addendum D:

Whoops. Will technology ever settle down? Now Hasselblad has a 39MP
image chip in the new H3D camera.

It's a 36 x 48mm sensor back that works with the FlexColor software we
none of us know and love.

Featuring a new 3F RAW image format (3FR), its lossless compressed
images save a whopping 33% on storage space.

7212 x 5412 pixel image files that would have been a whopping RAW
78.1MB are trimmed down to a positively tiny 50MB. Easy as wedding
cake. Did we mention that the 3FR files are 16-bit?

Or, if you are into 24-bit TIFFs, they're only 117MB each. Get a big
card.

One shot every 1.8 seconds. 35 each minute. That just about fills a 2-
Gig CF card.

Now THAT's a full frame camera. Cheap at just $40 grand
(approximately). The 31MP version is a modest $25 grand, US, street.

Check out a more complete story here at Photography Blog.

Canon's Bigger Gun:

On August 20, 2007, Canon brought out its biggest FF gun to date. The
EOS 1Ds Mark III DSLR has a new CMOS image chip delivering a 21.1MP
image into 5632 x 3750 pixels per shot.

At 180 ppi, that means a picture 31.28 inches wide.

Smaller pixels, in this case, about 6.4µm square, mean an earlier
onset of diffraction limits, but still, you can shoot at f/11-ish
without seeing any issue at all.

Just for perspective, each millimeter of image chip contains over 156
pixels, shoulder to shoulder. If you save your image as a TIFF file,
it will be 21,120,000 pixels times 24 bits, or around 63.4 megabytes.

But the camera hangs onto a 14-bit image in RAW (at 25-ish MB per
click). It takes eight channels of computation in two Digic III
processors to sort out each image.

Other features: 5 fps in continuous. A novel smallRAW (sRAW) half-
scale image option (14.5-ish MB per click). Uploading custom response
curves. 45 focus points. 63-zone matrix metering. 3-inch monitor. ISO
50-3200. Live View output for the joy of sharing.

The image chip has a version of the EOS Integrated Cleaning System,
which shakes off dust for 3.5 seconds every time you swap lenses or
power up the camera.

While not an underwater camera, if it rains on your parade while you
shoot, you still keep your soggy parade images. 76 water seals keep
the camera working in nasty weather.

It still doesn't have a built in flash. That would have cost too much,
and they were trying to keep the price reasonable.

A mere $7995.83US plus tax, lens and professional photographer
license.

* Full frame war, FFW, fought between 1998 and 2017 between the
ImRights and the NoWays. Many were called to the front. Fortunately,
there were no fatalities. Famous quotes: "Damn the pixels, full speed
ahead," "Photons? We don't need no stinkin' photons!" and "Oh, the
opinionation, the opinionation."

** Huge Honking Printers of the caliber that can reveal the advantages
discussed start at $2,000 and rise in price often by adding nothing
more than zeros to the price. How do you pronounce "Giclee?"
  #2  
Old February 11th 08, 11:39 PM posted to rec.photo.digital.slr-systems
____
external usenet poster
 
Posts: 534
Default Anti-full frame article

In article
,
RichA wrote:

Sorry, the images won't reproduce here of course.
http://www.digitalsecrets.net/secret...FrameWars.html

Thanks for finding that, almost have it read through.

--
Reality is a picture perfected and never looking back.
  #3  
Old February 12th 08, 03:35 AM posted to rec.photo.digital.slr-systems
Paul Furman
external usenet poster
 
Posts: 7,367
Default Anti-full frame article

RichA wrote:

http://www.digitalsecrets.net/secret...FrameWars.html

Wholly Grail?


Agreed it's interesting reading. I'll take a stab at it...

"the full frame-ness of the camera is nice, but is it worth a 275%+
premium?"

Yeah well the benefit is is diminishing, that's for sure, nothing new to
that idea. People should understand that before buying.

"How about diffraction? Doesn't that count. Yes, and avoidance of it is
a worthwhile goal, but the diffraction limits between your full-frame
12.8MP camera and an APS-C frame 10MP camera is only about 0.7 f-stop.
You paid WHAT for 2/3 of a stop of diffraction threshold and 3MP?"

That's real gain though :-) No way to cheat around it.


"If you can't actually print the 5616 pixel wide images onto paper 24
inches long--at minimum--you're never going to realize full-size blowups
from your 21.1MP images"

13x19 should work at 300dpi though, they are assuming about 240dpi which
admittedly is not far off but...

"The D2xs costs more than the 5D but shoots at 5 fps / 8 fps (in a
clever 6 MP crop mode) and includes virtually every hyper-pro feature in
the book (but also no on-board flash). So one kind of buying decision
comes down to: Pay a bit more for the thoroughly Pro camera or get the
stripped-down full framer?"

Eh, this is dated. 8-22-07 must be just weeks before it became dated,
no? It looks like he's updated the text partially several times... hard
to keep such an article up to date!

"Full frame differs from APS-C frame models in four areas:
* Noise (moot)"

Um, no not moot. That's the number one reason for full frame IMO.



  #4  
Old February 12th 08, 04:19 AM posted to rec.photo.digital.slr-systems
frederick
external usenet poster
 
Posts: 1,525
Default Anti-full frame article

Paul Furman wrote:
RichA wrote:

http://www.digitalsecrets.net/secret...FrameWars.html

Wholly Grail?


Agreed it's interesting reading. I'll take a stab at it...

"the full frame-ness of the camera is nice, but is it worth a 275%+
premium?"

Yeah well the benefit is is diminishing, that's for sure, nothing new to
that idea. People should understand that before buying.

"How about diffraction? Doesn't that count. Yes, and avoidance of it is
a worthwhile goal, but the diffraction limits between your full-frame
12.8MP camera and an APS-C frame 10MP camera is only about 0.7 f-stop.
You paid WHAT for 2/3 of a stop of diffraction threshold and 3MP?"

That's real gain though :-) No way to cheat around it.

Except that's a wrong assumption.
While the amount of diffraction (assuming the same final print size etc)
may be more with a smaller sensor with lens at the same f-stop, if
lenses with the same FOV are used at an f-stop giving the same depth of
field, then there's no difference, as DOF and diffraction scale.
Larger sensor allows reduced DOF. Assuming same pixel count vs a
smaller sensor, it doesn't allow greater DOF or resolution.
It would become really significant when cameras have such high pixel
counts that they are diffraction limited at normal working apertures.
Pentax (K20d) Sony (A350) and Olympus (E3) are already there, Olympus
makes up for it somewhat by making some very fast glass. But the price
of those makes the whole system unattractive IMO.


"If you can't actually print the 5616 pixel wide images onto paper 24
inches long--at minimum--you're never going to realize full-size blowups
from your 21.1MP images"

13x19 should work at 300dpi though, they are assuming about 240dpi which
admittedly is not far off but...

"The D2xs costs more than the 5D but shoots at 5 fps / 8 fps (in a
clever 6 MP crop mode) and includes virtually every hyper-pro feature in
the book (but also no on-board flash). So one kind of buying decision
comes down to: Pay a bit more for the thoroughly Pro camera or get the
stripped-down full framer?"

Eh, this is dated. 8-22-07 must be just weeks before it became dated,
no? It looks like he's updated the text partially several times... hard
to keep such an article up to date!

"Full frame differs from APS-C frame models in four areas:
* Noise (moot)"

Um, no not moot. That's the number one reason for full frame IMO.

True. but remember that in some cases you can practically _lose_ about
one stop of that advantage by stopping down 1 stop more to get the same
DOF. ie - for a 12mp full frame @ 30mm /f16 = 12mp aps-c @20mm / f11.
For me, the #1 reason for full frame would be to be able to use lenses
like the new Nikkor 12-24.
In the future, when 20 + mp cameras are affordable, then full-frame may
rule. I don't ever want a 15mp - let alone 20+ mp aps-c camera.
  #5  
Old February 12th 08, 04:31 AM posted to rec.photo.digital.slr-systems
m II
external usenet poster
 
Posts: 592
Default Anti-full frame article

RichA wrote:

Bigger is Always Better. End of Discussion.



Debt and tumors included?





mike
  #6  
Old February 12th 08, 05:18 AM posted to rec.photo.digital.slr-systems
Paul Furman
external usenet poster
 
Posts: 7,367
Default Anti-full frame article

frederick wrote:
Paul Furman wrote:
RichA wrote:

http://www.digitalsecrets.net/secret...FrameWars.html

Wholly Grail?


"How about diffraction? Doesn't that count. Yes, and avoidance of it
is a worthwhile goal, but the diffraction limits between your
full-frame 12.8MP camera and an APS-C frame 10MP camera is only about
0.7 f-stop. You paid WHAT for 2/3 of a stop of diffraction threshold
and 3MP?"

That's real gain though :-) No way to cheat around it.

Except that's a wrong assumption.
While the amount of diffraction (assuming the same final print size etc)
may be more with a smaller sensor with lens at the same f-stop, if
lenses with the same FOV are used at an f-stop giving the same depth of
field, then there's no difference, as DOF and diffraction scale.
Larger sensor allows reduced DOF. Assuming same pixel count vs a
smaller sensor, it doesn't allow greater DOF or resolution.


It does allow greater resolution if you can cope with the limited DOF,
hence the new tilt/shift Nikkors recently announced.

It would become really significant when cameras have such high pixel
counts that they are diffraction limited at normal working apertures.
Pentax (K20d) Sony (A350) and Olympus (E3) are already there, Olympus
makes up for it somewhat by making some very fast glass. But the price
of those makes the whole system unattractive IMO.


Any advantages in new tech will probably apply to smaller formats too so
I'm not sure this will ever help full frame but full frame always buys
you more working range even if it does come at a cost.

"If you can't actually print the 5616 pixel wide images onto paper 24
inches long--at minimum--you're never going to realize full-size
blowups from your 21.1MP images"

"Full frame differs from APS-C frame models in four areas:
* Noise (moot)"

Um, no not moot. That's the number one reason for full frame IMO.

True. but remember that in some cases you can practically _lose_ about
one stop of that advantage by stopping down 1 stop more to get the same
DOF. ie - for a 12mp full frame @ 30mm /f16 = 12mp aps-c @20mm / f11.
For me, the #1 reason for full frame would be to be able to use lenses
like the new Nikkor 12-24.


14-24 but really it only matters at the very widest end. Everything else
is covered. I have a Sigma 12-24 full frame that is a one of a kind
rectilinear focal length. Hmm, also the fast wides offer something APS
can't.

In the future, when 20 + mp cameras are affordable, then full-frame may
rule. I don't ever want a 15mp - let alone 20+ mp aps-c camera.


I don't want much more than 10MP till computers get faster. Large size
silicon chips will never be competitive with small chips for the price.
  #7  
Old February 12th 08, 05:37 AM posted to rec.photo.digital.slr-systems
RichA
external usenet poster
 
Posts: 2,544
Default Anti-full frame article

On Feb 11, 11:19 pm, frederick wrote:
Paul Furman wrote:
RichA wrote:


http://www.digitalsecrets.net/secret...FrameWars.html


Wholly Grail?


Agreed it's interesting reading. I'll take a stab at it...


"the full frame-ness of the camera is nice, but is it worth a 275%+
premium?"


Yeah well the benefit is is diminishing, that's for sure, nothing new to
that idea. People should understand that before buying.


"How about diffraction? Doesn't that count. Yes, and avoidance of it is
a worthwhile goal, but the diffraction limits between your full-frame
12.8MP camera and an APS-C frame 10MP camera is only about 0.7 f-stop.
You paid WHAT for 2/3 of a stop of diffraction threshold and 3MP?"


That's real gain though :-) No way to cheat around it.


Except that's a wrong assumption.
While the amount of diffraction (assuming the same final print size etc)
may be more with a smaller sensor with lens at the same f-stop, if
lenses with the same FOV are used at an f-stop giving the same depth of
field, then there's no difference, as DOF and diffraction scale.
Larger sensor allows reduced DOF. Assuming same pixel count vs a
smaller sensor, it doesn't allow greater DOF or resolution.
It would become really significant when cameras have such high pixel
counts that they are diffraction limited at normal working apertures.
Pentax (K20d) Sony (A350) and Olympus (E3) are already there, Olympus
makes up for it somewhat by making some very fast glass. But the price
of those makes the whole system unattractive IMO.


You have to think of the lenses in terms of the equivalent focal
lengths they offer.
Well, the (as an example) the Olympus 150mm f2.0 is around $2300.
What do you suppose Canon's upcoming 200mm f2.0 will cost? Equivalent
focal length on the Olympus 4/3rds and the Canon 1.6 crop cameras.
Olympus's 7-14mm is around $1600 and is an f4.0 lens while Nikon's
14-24mm f2.8 is $1500.00. Olympus new 50-200mm f2.8-3.5 is $1200,
Nikon's 70-200mm f2.8 is $1700.00. Olympus 90-250mm f2.8 is $5400.00
while Nikon's 200-400mm f4 is $5500.00

Also, all Olympus pro and top pro lenses are weatherproof, unlike the
competition's.
  #8  
Old February 12th 08, 06:45 AM posted to rec.photo.digital.slr-systems
frederick
external usenet poster
 
Posts: 1,525
Default Anti-full frame article

RichA wrote:
On Feb 11, 11:19 pm, frederick wrote:
Paul Furman wrote:
RichA wrote:
http://www.digitalsecrets.net/secret...FrameWars.html
Wholly Grail?
Agreed it's interesting reading. I'll take a stab at it...
"the full frame-ness of the camera is nice, but is it worth a 275%+
premium?"
Yeah well the benefit is is diminishing, that's for sure, nothing new to
that idea. People should understand that before buying.
"How about diffraction? Doesn't that count. Yes, and avoidance of it is
a worthwhile goal, but the diffraction limits between your full-frame
12.8MP camera and an APS-C frame 10MP camera is only about 0.7 f-stop.
You paid WHAT for 2/3 of a stop of diffraction threshold and 3MP?"
That's real gain though :-) No way to cheat around it.

Except that's a wrong assumption.
While the amount of diffraction (assuming the same final print size etc)
may be more with a smaller sensor with lens at the same f-stop, if
lenses with the same FOV are used at an f-stop giving the same depth of
field, then there's no difference, as DOF and diffraction scale.
Larger sensor allows reduced DOF. Assuming same pixel count vs a
smaller sensor, it doesn't allow greater DOF or resolution.
It would become really significant when cameras have such high pixel
counts that they are diffraction limited at normal working apertures.
Pentax (K20d) Sony (A350) and Olympus (E3) are already there, Olympus
makes up for it somewhat by making some very fast glass. But the price
of those makes the whole system unattractive IMO.


You have to think of the lenses in terms of the equivalent focal
lengths they offer.
Well, the (as an example) the Olympus 150mm f2.0 is around $2300.


That's equivalent to a 300mm f4 on 35mm.
A Canon 300mm f4l IS is $1100.

Olympus prices seriously suck.

What do you suppose Canon's upcoming 200mm f2.0 will cost?


Don't know, but probably less than an equivalent Zuiko 100mm f1.4, if
they could make one.

Equivalent
focal length on the Olympus 4/3rds and the Canon 1.6 crop cameras.
Olympus's 7-14mm is around $1600 and is an f4.0 lens while Nikon's
14-24mm f2.8 is $1500.00. Olympus new 50-200mm f2.8-3.5 is $1200,
Nikon's 70-200mm f2.8 is $1700.00. Olympus 90-250mm f2.8 is $5400.00
while Nikon's 200-400mm f4 is $5500.00

Also, all Olympus pro and top pro lenses are weatherproof, unlike the
competition's.

  #9  
Old February 12th 08, 09:27 AM posted to rec.photo.digital.slr-systems
Toby
external usenet poster
 
Posts: 87
Default Anti-full frame article

I think one look at side-by-side images produced by two ~12Mp cameras, the
Nikon D300 and the D3, especially as regards noise and shadow detail, pretty
much gives the lie to this rant, at least insofar as present technology is
concerned.

Toby


  #10  
Old February 12th 08, 09:53 AM posted to rec.photo.digital.slr-systems
frederick
external usenet poster
 
Posts: 1,525
Default Anti-full frame article

Toby wrote:
I think one look at side-by-side images produced by two ~12Mp cameras, the
Nikon D300 and the D3, especially as regards noise and shadow detail, pretty
much gives the lie to this rant, at least insofar as present technology is
concerned.

Toby


Except that you get 3 x D300s for the price of 1 x D3, and at base iso,
the difference isn't as much as some may like to think.
Perhaps Sony might put a cat amongst the pigeons with their 24mp full
frame slr, but I'll be very surprised if it will be as cheap as some
seem to be dream.
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Full frame or crop? [email protected] Digital Photography 7 April 15th 07 07:08 AM
Nikon will not go to full frame... Escaper Digital SLR Cameras 29 February 6th 06 01:19 AM
Why full-frame? Gregory L. Hansen 35mm Photo Equipment 72 December 5th 05 08:44 AM
Anti shake article at Minolta World Alan Browne Digital Photography 35 July 14th 04 04:41 AM
Anti shake article at Minolta World Alan Browne 35mm Photo Equipment 30 July 14th 04 04:41 AM


All times are GMT +1. The time now is 11:06 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 PhotoBanter.com.
The comments are property of their posters.